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Research inspired by brains 
and biological neurons

 Work in parallel and asynchronously

 Associate stimuli context-sensitively

 Use time approach for computations

 Represent various data and their relations

 Self-organize neurons developing 

a very complex structure 

 Aggregate representation of similar data

 Integrate memory and the procedures

 Provide plasticity to develop a structure

to represent data and object relations



ACTIVE NEURO-ASSOCIATIVE 
KNOWLEDGE GRAPHS (ANAKG)

 ANAKG produces a complex graph structure of 

dynamic and reactive neurons and connections 

to represent a set of training sequences.

 Neurons aggregate all instances of the same 

elements that occur in all sequences.



Objectives and Contribution
 Construction of the fine-tuning algorithm for synaptic weights to achieve better 

recalling of associatively stored training sequences and better generalization.

 Avoid unintended activations to stop possible false-recalling of sequences.

 Construct a well-aggregative model for storing correlated training sequences.

 Reproduce functionality of the biological neural substance.



ASN Neurons

 Connect context-sensitively to emphasize

training sequences and automatically develop

an ANAKG network structure.

 Aggregate representations of the same elements of 

the training sentences - no duplicates!

 Work asynchronously in parallel because time 

influences the results of the ANAKG network.

 Integrate memory and associative processes

GOAL: Reproduce functionality of
the biological neural substance!



Associative Spiking 
Neurons ASN

 Were developed to reproduce plasticity and associative 

properties of real neurons that work in time.

 They implement internal neuronal processes (IP) and 

efficiently manage their processing using internal 

process queues (IPQ) and a global event queue (GEQ).

 ASN neurons are updated only at the end of the 

internal processes (not continuously) to provide 

efficiency of data processing! 



How ASN neurons work 
and how they are modeled?

Internal states of ASN neurons are updated only 
at the end of internal processes (IP) that are
supervised by the Global Event Queue (GEQ).

IPQ represents a short

sequence of internal 

changes of a neuronal 

state dependent on 

the external stimuli and 

previous internal states 

of the neuron.



Model and Adaptation of 
Associative Spiking Neurons

How do neurons work?

Synaptic efficacy defines the efficiency of the synapsis of the 

stimulations and spiking reactions of the postsynaptic neurons:

It depends on:

∆𝑡𝐴 - the period of time that lapsed between the stimulation of the synapse between 

the 𝑁𝑚 and 𝑁𝑚+𝑟 neurons and the activation of the postsynaptic neuron 𝑁𝑚+𝑟

during training of the training sequence set 𝕊 = 𝑆1, … , 𝑆𝑁 ;

∆𝑡𝐶 - the period of time necessary to charge and activate the postsynaptic neuron 𝑁𝑚+𝑟

after stimulating the synapse between the 𝑁𝑚 and 𝑁𝑚+𝑟 neurons (here ∆𝑡𝐶);

∆𝑡𝑅 = 200ms - the maximum period of time during which the postsynaptic neuron 𝑁𝑚+𝑟

recovers and returns to its resting state after its charging that was not strong enough to 

activate this neuron;

𝜃𝑁𝑚+𝑟
𝑛 = 1 - the activation threshold of the postsynaptic neuron 𝑁𝑚+𝑟;

𝜏 = 4 - the context influence factor changing the influence of the previously activated and 

connected neurons on the postsynaptic neuron 𝑁𝑚+𝑟.



Model and Adaptation of 
Associative Spiking Neurons

Synaptic efficacy 𝛿 and the number 𝜂 of activations of the 

presynaptic neuron 𝑁𝑚 during training of the training sequence 

set 𝕊 is used to define synaptic permeability 𝑝:

OR

Which is finally used to compute synaptic weights: 

where 𝑐 is the synaptic influence: excitatory (c = 1) or inhibitory 

(c = −1), and m is the multiplication factor modeling the number 

of synapses connecting the presynaptic and postsynaptic 

neurons.



Adaptation and Tuning of 
Associative Spiking Neurons

The weights computed in a presented way are good enough for 

the primary set of weights in the complex graph neural networks:
I have a monkey. My monkey is very small. It is very lovely. It is also very clever.

The introduced tuning process allows for the achievement of

better recalling results thanks to the slight modification of

the multiplication factors of the synapses.



Tuning Process of ANAKG

On this basis we can define strengthening and 
weakening operations for the tuning process.

Two repetitive steps of the tuning process:

1. All undesired and premature activations of neurons are avoided for 

all training sequences by using weakening operations. 

2. Conflicts between correlated training sequences are fine-tuned 

using strengthening operations.

We define: 𝑠𝑙𝑎𝑠𝑡
𝑐ℎ𝑎𝑟𝑔𝑒

- the strength of the last stimulus,

𝑥 – charge level at the moment when the last stimulus came

𝑥𝑎𝑙𝑙
𝑚𝑎𝑥 - the maximum dynamic charge level of each stimulated neuron

𝑥𝑎𝑙𝑙
𝑚𝑎𝑥 =  

𝑥 + 𝑠𝑙𝑎𝑠𝑡
𝑐ℎ𝑎𝑟𝑔𝑒

𝑖𝑓 𝑥 + 𝑠𝑙𝑎𝑠𝑡
𝑐ℎ𝑎𝑟𝑔𝑒

> 𝑥𝑎𝑙𝑙
𝑚𝑎𝑥

𝑥𝑎𝑙𝑙
𝑚𝑎𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑥𝑐𝑜𝑛𝑡𝑒𝑥𝑡
𝑚𝑎𝑥 - the previous maximum charge level establishing the context 

of the last stimulus that should activate the neuron:

𝑥𝑐𝑜𝑛𝑡𝑒𝑥𝑡
𝑚𝑎𝑥 = 𝑥𝑎𝑙𝑙

𝑚𝑎𝑥 − 𝑠𝑙𝑎𝑠𝑡
𝑐ℎ𝑎𝑟𝑔𝑒

The correct activation of the neuron assumes that 

𝑥𝑐𝑜𝑛𝑡𝑒𝑥𝑡
𝑚𝑎𝑥 < 𝜃 ≤ 𝑥𝑐𝑜𝑛𝑡𝑒𝑥𝑡

𝑚𝑎𝑥 + 𝑠𝑙𝑎𝑠𝑡
𝑐ℎ𝑎𝑟𝑔𝑒



Weakening Operation

Weakening operations always start and finish
the tuning process of the ANAKG network.

The weakening operation defines how the multiplication factor m

decreases when a neuron is activated in the incorrect context or 

prematurely in the reduced context:

𝛾 =

𝜃

𝑥𝑎𝑙𝑙
𝑚𝑎𝑥 + 𝜀

𝑓𝑜𝑟 𝑡ℎ𝑒 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝜃

𝑥𝑐𝑜𝑛𝑡𝑒𝑥𝑡
𝑚𝑎𝑥 + 𝜀

𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑟𝑒𝑚𝑎𝑡𝑢𝑟𝑒 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑚 = 𝑚 ∙ 𝛾

𝑤 = 𝑐 ∙ 𝑝 ∙ 𝑚

The multiplication factors of the incorrect activations must be 

deceased to operate on the right stimulation context of the next 

neurons of the recalled training sequence.



Strengthening Operation

Strengthening operations allows for recalling of
the following elements of the training sequences 

when the stimulation context is unique.

The strengthening operation defines how the multiplication factor m

increases when a neuron is not activated in the right context of 

all predecessor of the training sequence or too late:

𝛾 =
𝜃

𝑥𝑎𝑙𝑙
𝑚𝑎𝑥 − 𝜀

𝑚 = 𝑚 ∙ 𝛾

𝑤 = 𝑐 ∙ 𝑝 ∙ 𝑚

The strengthening operation always tries to achieve stimulation of 

the next sequence element. However, sometimes it is not beneficial 

if the initial context is not unique, e.g. there are few training sequences 

which start from the same subsequences of elements.



Experimental Results

The achieved 
results confirm 

that the 
proposed tuning 

process is 
beneficial and 

produce better-
adapted weights 

allowing to 
achieved better 
recalls from the 
ANAGK network.

TRAINING DATA SET:
I have a monkey. 
My monkey is very small. 
It is very lovely. 
It likes to sit on my head. 
It can jump very quickly.
It is also very clever. 
It learns quickly. 
My monkey is lovely. 
I also have a big cat. 
My son also has a monkey. 
It likes to sit on his lamp. 
I have an old sister. 
She is very lovely. 
My sister has a small cat. 
She likes to sit in the library 
and read books. 
She quickly learns languages. 
My sister has a cat. 
It is very small. 
You have a cat as well. 
It is big. 
I have a young brother. 
My brother is small. 
He has a monkey and dogs. 
His monkey is small as well. 
We have lovely dogs.



Conclusions
 The presented fine-tuning algorithm adapts weights of the associative pulsing 

neurons of the ANAKG neural network more accurately and allows to achieve 
better recalling of training sequences.
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